

LIST Field Testing

A Wind Turbine Inflow and Loads Correlations Study

at the Colorado Green Wind Farm, Lamar, Colorado

November 17, 2004

Jose R. Zayas 505-284-9446 jrzayas@sandia.gov

Presentation Topics

- What are the issues?
- Research approach
- Past LIST programs
- Current LIST program
- LIST program future plans

Issues

- What atmospheric phenomena generate turbulence characteristics that contribute to fatigue failure of turbine components?
- Do current turbulence models create wind conditions that accurately predict turbine response?
- Is there a 'floor' to the fatigue load spectrum, or can it be extrapolated?

Research Approach

- Embark on measurement campaigns to obtain detailed inflow and corresponding wind turbine response
 - Identify interaction between wind turbine and turbulence structures associated with atmospheric phenomena near specific geographic features (e.g. Great Plains)
- Incorporate identified wind characteristics in empirical simulation codes presented later by Neil Kelley

- Long-term one or more wind seasons
- Inflow turbulence and thermodynamic characteristics of wind in various geographic locations
- Structural extreme loads and component fatigue damage resulting from inflow
- Test experimental measurement campaign
 - Bushland, TX (Campaign I-330 hrs; II-1000+hrs)
 - NWTC, CO (2000-2001 wind season)
 - Lamar, CO (2004 ??)

LIST – Bushland, TX (Fatigue)

COLLABORATIONS

USDA

University of Texas at Austin
University of Waterloo
UC Davis
NASA

PUBLICATIONS

- Description of Measurement Campaigns: 6
- Use of the Database: 8+
- Graduate Theses: 3

Refine Fatigue Loads

LIST – Bushland, TX (Extreme)

- Reduce Conservative Design Allowables
- Validate Design Load Methodology
 - Extreme Loads
 - Fatigue Loads
- Refine Loads Used in Verification Testing
- Define Site-Specific Design Loads
 - On-Shore
 - Off-Shore

Extreme Design Load Analysis

LIST – NWTC, CO

• Demonstrated correlation between high equivalent fatigue loads and atmospheric stability, Reynolds stress field, and buoyancy length scales associated with the nocturnal boundary layer up to heights of 58 m above ground.

Kelley et al., 2004, Lamar Low-Level Jet Project Interim Report, NREL-TP-500-34593; 3 conference papers

NREL, SNL, and GE Wind LLJ-LIST Lamar Project

- Partnership formed among NREL, SNL, and GE Energy, to measure loads and corresponding inflow on a utility scale wind turbine at heights up to 113 m at Great Plains wind site (CRADA SC03/01683.02)
- Additional instrumentation on 120 m tower provides detailed turbulence and thermodynamic measurements near turbine.
- Acoustic wind profiler (SODAR) measures vertical wind profile up to 500 m above ground level.

Objective

- Quantify interaction between coherent turbulence associated with atmospheric phenomena such as low-level jets and wind turbine response
- Validate design and analysis methods for turbine loads and fatigue

Colorado Green Test Site Layout

Inflow Instrumentation

Inflow Meteorological Tower

Wind Turbine Instrumentation (SNL)

• GE 1.5MW Wind Turbine, Colorado Green Site

- 72 m rotor diameter on an 80 m tower
- SNL ATLAS II Data Acquisition Systems for turbine and local met tower
 - 64 channels 40 Hz ~ 2.5 GB
 Daily (uncompressed)
 - Loads measurements include blade root bending, main-shaft bending and torque, tower bending and torsion, gearbox and main bearing acceleration and rotation rate.

ATLAS II Configurations

LLJ Tower Instrumentation (NREL)

- 42 channels 20 Hz \sim 572 MB Daily (raw and processed)
- Four sonic anemometers from 54 m to 113 m; 2 cup anemometers; 2 wind direction vanes; 3 absolute and 2 delta temperature, 4 dew point temperature, and pressure
- Obtain detailed turbulence and thermodynamic characteristics of atmospheric layers encompassing turbine rotor

NREL Low-level Jet meteorological tower

Example of possible low-level jet

Colorado Green Test Site Diagram

LLJ-LIST Project Current Status

Commission Date: September 14, 2004

Project Duration: project assessment after 3-months with option to continue for 1 year

Turbine Data Set Size: 7499 10-minute records, 19.9 GB of raw data (as of November 9,

2004)

LLJ Tower Data Set Size: 7871 10-minute records, 7.3 GB of raw data (as of November 9, 2004)

SODAR Data Preliminary Result: 7/55 daily records strong indication of low-level jet formation

Data Availability: GE Energy personnel access processed data via secure web interface

Proposed Publications: 1) A Wind Turbine Blade Load Study at a Great Plains Wind Site,

Submitted to AWEA 2005.

2) A Secure Data Collection Method for Wind Turbines Using an

Internet Option, Submitted to AWEA 2005.

3) GE Energy/NREL/SNL LLJ-LIST Experiment Test Plan,

CRADA SC03/01683.02.

- Continue data collection to obtain one year record
 - Estimate 460 GB of raw and processed data
- FAST and/or ADAMS loads and turbulence validation studies
- Produce final report assessing interaction between wind turbine and turbulent flow field at Great Plains site

LIST Plans Beyond 2007

• Duplicate measurement campaign for other geographically interesting sites (e.g., low-wind speed turbine site, offshore, ...) to identify associated atmospheric turbulence generation mechanisms and quantify their effect on wind turbine operation

Colorado Green LLJ and LIST Project Staff

NREL Principal Investigator: Maureen Hand

NREL Field Test Engineer: Richard Osgood

NREL Field Test Support: Dave Jager

NREL IT Support: Jim Mittl

SNL Project Lead: Mark Rumsey

SNL Technical Project Lead: Jose Zayas

SNL Field Test Support: Perry Jones, Wesley Johnson

GE Energy Project Lead: Troy "TC" Patton

GE Energy Field Test Support: Mark McQuillen

Visual Tour of the Test Site

Tower Ladder to 2nd of 5 tower landings

SNL Master Data Acquisition System

Inside the nacelle

